Map

A Map is a container that maps keys to instances of another container.

Most commonly, you will use a Map to store a list of items. For example, the signature could be a Map<String, Item<String>> to store a list of signatures for each user. (See the first example.)

Examples

Keeping balances

Let’s say you want to keep track of the balances of each user. You can do this with a Map<String, Item<Uint128>>.

use cw_storey::containers::{Item, Map};
use cw_storey::CwStorage;
 
const BALANCES_IX: u8 = 0;
 
let balances: Map<String, Item<Uint128>> = Map::new(BALANCES_IX);
let mut cw_storage = CwStorage(&mut storage);
let mut access = balances.access(&mut cw_storage);
 
assert_eq!(access.entry("alice").get().unwrap(), None);
 
access.entry_mut("alice").set(&Uint128::new(1000)).unwrap();
 
assert_eq!(access.entry("alice").get().unwrap(), Some(Uint128::new(1000)));
  • line 6: Here we construct the Map facade. The constructor takes a key, which is the prefix of the keys in the underlying storage backend.
  • line 8: The access method returns a MapAccess entity, which allows manipulating the map.
  • line 10: Here we try to access the balance of alice. Since she doesn’t have one yet, it returns None. The entry method returns an ItemAccess entity, which allows manipulating the item stored under the key alice.
  • line 12: Here we set Alice’s balance to 1000.
  • line 14: We check that the balance is now 1000.

Iterating over the balances

⚠️

When iterating over the entries in a Map using the pairs, keys, and values methods, the order of the keys is not guaranteed to be sensible (though it is deterministic). If you need a sensible order, try using the bounded iterators. If they do not exist (BoundedIterableAccessor is not implemented for the accessor), sensibly ordered iteration is not possible.

Bounded or sensibly ordered iteration is not possible when both of the following conditions are met:

  • The key is dynamically sized (e.g. String, Vec<u8>, etc.).
  • The value type is a collection (Map, Column, etc.) rather than something like Item.

Iterating over the balances is pretty straightforward. The keys method returns an iterator over the keys, the values method returns an iterator over the values, and the pairs method returns an iterator over both.

use cw_storey::containers::{Item, Map};
use cw_storey::CwStorage;
 
use storey::containers::IterableAccessor as _;
 
const BALANCES_IX: u8 = 1;
 
let balances: Map<String, Item<Uint128>> = Map::new(BALANCES_IX);
let mut cw_storage = CwStorage(&mut storage);
let mut access = balances.access(&mut cw_storage);
 
access.entry_mut("bob").set(&Uint128::new(500)).unwrap();
access.entry_mut("carol").set(&Uint128::new(1500)).unwrap();
access.entry_mut("dave").set(&Uint128::new(2000)).unwrap();
 
assert_eq!(
    access.pairs().collect::<Result<Vec<_>, _>>().unwrap(),
    vec![
        (("bob".to_string(), ()), Uint128::new(500)),
        (("carol".to_string(), ()), Uint128::new(1500)),
        (("dave".to_string(), ()), Uint128::new(2000)),
    ]
);
 
assert_eq!(
    access.keys().collect::<Result<Vec<_>, _>>().unwrap(),
    vec![("bob".to_string(), ()), ("carol".to_string(), ()), ("dave".to_string(), ())]
);
 
assert_eq!(
    access.values().collect::<Result<Vec<_>, _>>().unwrap(),
    vec![Uint128::new(500), Uint128::new(1500), Uint128::new(2000)]
);
  • line 4: Here we import the IterableAccessor trait. This trait provides unbounded iteration.
  • line 17: The pairs method returns an iterator over the key-value pairs.
  • line 19: Notice the key type is (String, ()). This is likely to become just String in the future. For now, consider this a quirk of the design. This will make more sense once you get to composite maps.

Bounded iteration

Bounded iteration is also supported in many cases.

use cw_storey::containers::{Item, Map};
use cw_storey::CwStorage;
 
use storey::containers::BoundedIterableAccessor as _;
 
const BALANCES_IX: u8 = 1;
 
let balances: Map<String, Item<Uint128>> = Map::new(BALANCES_IX);
let mut cw_storage = CwStorage(&mut storage);
let mut access = balances.access(&mut cw_storage);
 
access.entry_mut("bob").set(&Uint128::new(500)).unwrap();
access.entry_mut("carol").set(&Uint128::new(1500)).unwrap();
access.entry_mut("dave").set(&Uint128::new(2000)).unwrap();
 
assert_eq!(
    access.bounded_pairs(Some("bob"), Some("dave")).collect::<Result<Vec<_>, _>>().unwrap(),
    vec![(("bob".to_string(), ()), Uint128::new(500)), (("carol".to_string(), ()), Uint128::new(1500))]
);

Here we used the bounded_pairs method to iterate over some key-value pairs. Other bounded methods are also available: bounded_keys and bounded_values.

The bounds are provided as arguments to the methods. Currently, the bounds are inclusive on the lower bound and exclusive on the upper bound. In a future release (soon!) this will be configurable.

Keeping balances with composition

Alright, let’s say this time you’d also like to keep track of the balances of each user, but each can have multiple different tokens. This is where composition comes in.

use cw_storey::containers::{Item, Map};
use cw_storey::CwStorage;
 
const BALANCES_IX: u8 = 0;
 
let balances: Map<String, Map<String, Item<Uint128>>> = Map::new(BALANCES_IX);
let mut cw_storage = CwStorage(&mut storage);
let mut access = balances.access(&mut cw_storage);
 
access.entry_mut("alice").entry_mut("USDT").set(&Uint128::new(1000)).unwrap();
access.entry_mut("alice").entry_mut("OSMO").set(&Uint128::new(2000)).unwrap();
 
assert_eq!(access.entry("alice").entry("USDT").get().unwrap(), Some(Uint128::new(1000)));
assert_eq!(access.entry("alice").entry("OSMO").get().unwrap(), Some(Uint128::new(2000)));

This example is similar to the previous one, but this time we have an extra level of nesting.

First of all, our type is Map<String, Map<String, Item<Uint128>>>. The outer map maps user addresses to inner maps. The inner map maps token denominations to actual balances.

When we access the stuff, the first entry/entry_mut call accesses a record in the outer map, and the second one accesses a record in the inner map.

💡

In cw-storage-plus, you can achieve the same effect using composite keys (tuples). The example above would then use something like cw_storage_plus::Map<(String, String), Uint128>.

Iterating over the balances

Let’s take a look at what iteration looks like with a composite map.

use cw_storey::containers::{Item, Map};
use cw_storey::CwStorage;
use cosmwasm_std::Order;
 
use storey::containers::IterableAccessor as _;
 
const BALANCES_IX: u8 = 1;
 
let balances: Map<String, Map<String, Item<u64>>> = Map::new(BALANCES_IX);
let mut cw_storage = CwStorage(&mut storage);
let mut access = balances.access(&mut cw_storage);
 
access.entry_mut("alice").entry_mut("USDT").set(&1000).unwrap();
access.entry_mut("alice").entry_mut("OSMO").set(&2000).unwrap();
access.entry_mut("bob").entry_mut("USDT").set(&1500).unwrap();
 
assert_eq!(
    access.pairs().collect::<Result<Vec<_>, _>>().unwrap(),
    vec![
        (("bob".into(), ("USDT".into(), ())), 1500),
        (("alice".into(), ("OSMO".into(), ())), 2000),
        (("alice".into(), ("USDT".into(), ())), 1000),
    ]
);
 
assert_eq!(
    access.entry("alice").pairs().collect::<Result<Vec<_>, _>>().unwrap(),
    vec![(("OSMO".into(), ()), 2000), (("USDT".into(), ()), 1000)]
);

Here we iterated twice, but each time we got a different view of the data. Each iteration was at a different level.

  • line 18: We call pairs on the outer map, which gives us all the entries.
  • line 27: We call pairs on the inner map under the key alice, which gives us all of Alice’s balances.

We can of course do the same with the keys and values methods.

In the example above, bounded iteration (and a sensible order of iteration) is only possible for the inner map. The reason for that is explained in the warning box at the beginning of the section.